首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83063篇
  免费   6772篇
  国内免费   11912篇
化学   66367篇
晶体学   2019篇
力学   1135篇
综合类   1031篇
数学   10418篇
物理学   20777篇
  2023年   1090篇
  2022年   1203篇
  2021年   2762篇
  2020年   2399篇
  2019年   2704篇
  2018年   1963篇
  2017年   2571篇
  2016年   2601篇
  2015年   2428篇
  2014年   3135篇
  2013年   6414篇
  2012年   4494篇
  2011年   4954篇
  2010年   4258篇
  2009年   5336篇
  2008年   5401篇
  2007年   5544篇
  2006年   4888篇
  2005年   3890篇
  2004年   3802篇
  2003年   3369篇
  2002年   5445篇
  2001年   2743篇
  2000年   2220篇
  1999年   1525篇
  1998年   1349篇
  1997年   1158篇
  1996年   1129篇
  1995年   1155篇
  1994年   1046篇
  1993年   933篇
  1992年   939篇
  1991年   663篇
  1990年   501篇
  1989年   420篇
  1988年   423篇
  1987年   328篇
  1986年   305篇
  1985年   414篇
  1984年   311篇
  1983年   168篇
  1982年   340篇
  1981年   543篇
  1980年   478篇
  1979年   502篇
  1978年   401篇
  1977年   311篇
  1976年   263篇
  1974年   87篇
  1973年   177篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
The nature of the 2e/12c bond and its conversion to a carbon-carbon single bond in phenalenyl dimers have prompted a great deal of interests recently. In this work, we theoretically investigated a series of π-stacking phenalenyl derivatives with 2e/12c bonding character by density functional theory (DFT) calculations to elucidate origin of this unusual bond conversion. Results show that bond-conversion of the phenalenyl dimer easily occurs at room-temperature both dynamically and thermodynamically. However, bond-conversion of hetero π-stacking adducts, in which the two center carbon atoms were substituted by boron and nitrogen atoms, respectively, is much more difficult, because the 2e/12c bond is stabilized by its charge transfer character. Consequently, the bond-conversion is an endothermic process, albeit with a low conversion barrier. Interestingly, Lewis acid-base interactions would be induced by substitution of the center nitrogen atom to phosphorus atom. The 2e/12c bond is further stabilized by 5.9 kcal mol−1 and its conversion is also thermodynamically unfavorable.  相似文献   
42.
Ru is an important catalyst in many types of reactions. Specifically, Ru is well known as the best monometallic catalyst for oxidation of carbon monoxide (CO) and has been practically used in residential fuel cell systems. However, Ru is a minor metal, and the supply risk often causes violent fluctuations in the price of Ru. Performance‐improved and cost‐reduced solid‐solution alloy nanoparticles of the Cu‐Ru system for CO oxidation are now presented. Over the whole composition range, all of the CuxRu1?x nanoparticles exhibit significantly enhanced CO oxidation activities, even at 70 at % of inexpensive Cu, compared to Ru nanoparticles. Only 5 at % replacement of Ru with Cu provided much better CO oxidation activity, and the maximum activity was achieved by 20 at % replacement of Ru by Cu. The origin of the high catalytic performance was found as CO site change by Cu substitution, which was investigated using in situ Fourier transform infrared spectra and theoretical calculations.  相似文献   
43.
Dr. Qing Tang 《Chemphyschem》2019,20(4):595-601
Among the widely studied 2D transition metal dichalcogenides (TMDs), MoTe2 has attracted special interest for phase-change applications due to its small 2H-1T′ energy difference, yet a large scale phase transition without structural disruption remains a significant challenge. Recently, an interesting long-range phase engineering of MoTe2 has been realized experimentally by Ca2N electride. However, the interface formed between them has not been well understood, and moreover, it remains elusive how the presence of Ca2N would affect the basal plane reactivity of MoTe2. To address this, we performed density functional theory (DFT) calculations to investigate the potential of tuning the phase stability and chemical reactivity of a MoTe2 monolayer via interacting with Ca2N to form a van der Walls heterostructure. We found that the contact nature at the 2H-MoTe2/Ca2N interface is Schottky-barrier-free, allowing for the spontaneous electron transfer from Ca2N to 2H-MoTe2 to make it strongly n-type doped. Moreover, Ca2N doping significantly lowers the energy of 1T′-MoTe2 and dynamically triggers the 2H-to-1T′ transformation. The Ca2N-induced phase modulation can also be applied to tune the phase energetics of MoS2 and MoSe2. Furthermore, using H adsorption as the testing ground, we also find that the H binding on the basal plane of MoTe2 is enhanced after forming heterostructure with Ca2N, potentially providing basis for surface modification and other related catalytic applications.  相似文献   
44.
Boragermene 3 featuring a double bond between the Ge and dicoordinate B atoms has been synthesized for the first time by reacting the cyclic (alkyl)(boryl)germylene–PMe3 adduct 1 with Cl2BN(SiMe3)2 followed by reductive dehalogenation with KC8. Addition of a Lewis base (MeNHC) to 3 leads to the formation of the corresponding adduct 4 , which shows double bond character between the Ge and tricoordinate B atoms. Compound 3 undergoes hydrogenation with H2 concomitant with a complete scission of the Ge=B bond.  相似文献   
45.
X-ray imaging functionalization of biodegradable polyesters is a great demand and challenge in biomedical applications.In this work,a strategy of in-chain functionalization through the combination of ring opening copolymerization and oxime "Click" postfunctionalization was developed towards X-ray opaque polylactide copolymers.A functionalized cyclic carbonate was first synthesized and used as comonomer of polylactide copolymers,which were subjected to postfunctionalization of oxime "Click" reaction towards iodinated polylactide copolymers.The chemical structure and physical properties of the target products were traced and confirmed.In vitro cytotoxicity evaluation with 3T3-Swiss albino by Alamar blue demonstrated a low cytotoxicity.The X-ray radiopacity was analyzed by Micro-CT and quantified by Hounsfield Units value,which could be tailorable by the feedstock.It is a promising X-ray visible implantable biomaterial in biomedical applications.  相似文献   
46.
Respiratory infections are a real threat for humans, and therefore the pig model is of interest for studies. As one of a case for studies, Actinobacillus pleuropneumoniae (APP) caused infections and still worries many pig breeders around the world. To better understand the influence of pathogenic effect of APP on a respiratory system—lungs and tracheobronchial lymph nodes (TBLN), we aimed to employ matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-TOF MSI). In this study, six pigs were intranasally infected by APP and two were used as non-infected control, and 48 cryosections have been obtained. MALDI-TOF MSI and immunohistochemistry (IHC) were used to study spatial distribution of infectious markers, especially interleukins, in cryosections of porcine tissues of lungs (necrotic area, marginal zone) and tracheobronchial lymph nodes (TBLN) from pigs infected by APP. CD163, interleukin 1β (IL-1β) and a protegrin-4 precursor were successfully detected based on their tryptic fragments. CD163 and IL-1β were confirmed also by IHC. The protegrin-4 precursor was identified by MALDI-TOF/TOF directly on the tissue cryosections. CD163, IL-1β and protegrin-4 precursor were all significantly (p < 0.001) more expressed in necrotic areas of lungs infected by APP than in marginal zone, TBLN and in control lungs.  相似文献   
47.
叶灵婷  谢奎 《电化学》2020,26(2):253
固体氧化物电解池可高效地电解H2O/CO2制备燃料,越来越受到人们的重视. 本文对近年来在燃料电极(阴极)材料方面的研究进展进行了全面综述,指出各种阴极材料的优缺点及发展趋势,强调亟待解决的关键科学与技术问题.  相似文献   
48.
Defects play a central role in controlling the electronic properties of two-dimensional (2D) materials and realizing the industrialization of 2D electronics. However, the evaluation of charged defects in 2D materials within first-principles calculation is very challenging and has triggered a recent development of the WLZ (Wang, Li, Zhang) extrapolation method. This method lays the foundation of the theoretical evaluation of energies of charged defects in 2D materials within the first-principles framework. Herein, the vital role of defects for advancing 2D electronics is discussed, followed by an introduction of the fundamentals of the WLZ extrapolation method. The ionization energies (IEs) obtained by this method for defects in various 2D semiconductors are then reviewed and summarized. Finally, the unique defect physics in 2D dimensions including the dielectric environment effects, defect ionization process, and carrier transport mechanism captured with the WLZ extrapolation method are presented. As an efficient and reasonable evaluation of charged defects in 2D materials for nanoelectronics and other emerging applications, this work can be of benefit to the community.  相似文献   
49.
In recent years, spatial self-phase modulation (SSPM) with two-dimensional (2D) materials has attracted the attention of many researchers as an emerging and ubiquitous nonlinear optical effect. In this review, the state of the art of 2D material-based SSPM is summarized. SSPM measures or tunes the nonlinearity of 2D materials, and it is also an effective approach to study the band structure of 2D materials. Several modified forms of SSPM, such as high-order, white-light-excited, vector field excited, and optically nonlinearly enhanced SSPM are also presented. Subsequently, the physical origin of the SSPM formation mechanism is compared and analyzed. Furthermore, the applications of SSPM with 2D materials, including passive photonic devices, generation of Bessel beams, and identifying the mode of the orbital angular momentum, are listed. Finally, several urgent problems of the SSPM with 2D materials, potential applications, and prospects for future development are presented.  相似文献   
50.
The evolution of states of the composition of classical and quantum systems in the groupoid formalism for physical theories introduced recently is discussed. It is shown that the notion of a classical system, in the sense of Birkhoff and von Neumann, is equivalent, in the case of systems with a countable number of outputs, to a totally disconnected groupoid with Abelian von Neumann algebra. The impossibility of evolving a separable state of a composite system made up of a classical and a quantum one into an entangled state by means of a unitary evolution is proven in accordance with Raggio’s theorem, which is extended to include a new family of separable states corresponding to the composition of a system with a totally disconnected space of outcomes and a quantum one.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号